US009141790B2

a2z United States Patent (10) Patent No.: US 9,141,790 B2
Roundy et al. 45) Date of Patent: *Sep. 22, 2015
(54) SYSTEMS AND METHODS FOR USING (58) Field of Classification Search
EVENT-CORRELATION GRAPHS TO CPC GO6F 21/577; GO6F 21/55; HO4L 63/1433
DETECT ATTACKS ON COMPUTING See application file for complete search history.
SYSTEMS (56) References Cited
(71) Applicant: Symantec Corporation, Mountain View, US. PATENT DOCUMENTS
CA (US)
. 7,624,448 B2* 11/2009 Coffmancccccoceeueuns 726/23
(72) Inventors: Kevin Roundy, El Segundo, CA (US); 7,735,141 BL* 6/2010 Noel etal .occoovcrccrrene. 726/25

Fanglu Guo, Los Angeles, CA (US);
Sandeep Bhatkar, Sunnyvale, CA (US);
Tao Cheng, Chengdu (CN); Jie Fu,
Chengdu (CN); Zhi Kai Li, Zigong

(Continued)

FOREIGN PATENT DOCUMENTS

(CN); Darren Shou, La Jolla, CA (US); CN 102571469 7/2012
Sanjay Sawhney, Cupertino, CA (US); CN 102893289 12013
Acar Tamersoy, Atlanta, GA (US); EP 2515250 10/2012
Elias Khalil, Culver City, CA (US) OTHER PUBLICATIONS
(73) Assignee: Symantec Corporation, Mountain View, Adam Glick, et al.; Systems and Methods for User-Directed Malware
CA (US) Remediation; U.S. Appl. No. 13/419,360, filed Mar. 13, 2012.
(Continued)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 58 days. Primary Examiner — Michael Pyzocha

(74) Attorney, Agent, or Firm — ALG Intellectual Property,

This patent is subject to a terminal dis- LLC

claimer. (57) ABSTRACT
(21) Appl. No.: 14/041,762 A computer-implemented method for using event-correlation
graphs to detect attacks on computing systems may include
(22) Filed: Sep. 30, 2013 (1) detecting a suspicious event involving a first actor within
. L a computing system, (2) constructing an event-correlation
(65) Prior Publication Data graph that includes a first node that represents the first actor,
US 2015/0074806 A1l Mar. 12, 2015 a second node that represents a second actor, and an edge that

interconnects the first node and the second node and repre-

Related U.S. Application Data sents a suspicious event involving the first actor and the sec-

(63) Continuation of application No. ond actor, (3) calculating, based at least in part on the addi-

PCT/CN2013/083228, filed on Sep. 10, 2013. tional suspicious event, an attack score for the event-

correlation graph, (4) determining that the attack score is

(51) Int. CL greater than a predetermined threshold, and (5) determining,

GOOF 21/00 (2013.01) based at least in part on the attack score being greater than the

GOGF 21/55 (2013.01) predetermined threshold, that the suspicious event may be

(Continued) part of an attack on the computing system. Various other

(52) US.CL methods, systems, and computer-readable media are also dis-

(- CR— GOGF 21/55 (2013.01); GOG6F 21/577 ©losed

(2013.01); HO4L 63/1433 (2013.01) 20 Claims, 12 Drawing Sheets

300

| |

l

‘ F— |

in respons
invoiing the frst actor
04

l

‘Galculats an atiack scora or the avant conslation groph
0

le—1

US 9,141,790 B2
Page 2

(51) Int.CL

GO6F 21/57 (2013.01)
HO4L 29/06 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

7,861,300 B2 12/2010 Arnold et al.

8,104,090 B1* 1/2012 Pavlyushchik 726/24

8,341,745 B1 12/2012 Chau et al.

8,555,385 B1* 10/2013 Bhatkaretal. 726/22

8,566,938 Bl 10/2013 Prakash et al.

8,793,790 B2* 7/2014 Khuranaetal. 726/22

8,881,288 Bl * 11/2014 Levyetal. ... 726/25
2005/0138413 Al* 6/2005 Lippmannetal. 713/201

2006/0212941 Al* 9/2006 Bronnikov et al .. 726/24
2007/0209074 Al* 9/2007 Coffman 726/23
2007/0226796 Al* 9/2007 Gilbert et al. 726/22
2008/0313734 Al* 12/2008 Rozenberg et al. .. 726/22
2009/0138590 Al* 5/2009 Leeetal.occcoovevvrennnnn 709/224
2009/0144308 Al 6/2009 Huie et al.

2010/0031093 Al* 2/2010 Sunetal.ccocevvenneen.. 714/45
2010/0082513 Al™ 4/2010 Liu coooovvvvriieieeeieie. 706/46
2010/0115620 Al* 5/2010 Almeccoooovvevvevrenrnene. 726/24
2010/0180344 Al* 7/2010 Malyshev et al. .. 726/23
2010/0186088 Al* 7/2010 Banerjeeetal. 726/23
2010/0192226 Al 7/2010 Noel et al.

2010/0235879 Al* 9/2010 Burnside etal. 726/1
2011/0047620 Al 2/2011 Mahaffey et al.

2011/0083180 Al* 4/2011 Mashevsky etal. 726/23
2011/0252032 Al* 10/2011 Fitzgerald et al. . 707/737
2012/0137367 Al* 5/2012 Dupontetal. 726/25
2012/0216280 Al* /2012 Zornetal. ... 726/23
2012/0246720 Al* 9/2012 Xieetal.ccocvvrvnnnnnn. 726/22
2013/0042294 Al 2/2013 Colvin et al.

2013/0246605 Al* 9/2013 Mahadik et al. 709/224
2013/0318616 Al* 11/2013 Christodorescu et al. 726/25
2013/0333032 Al 12/2013 Delatorre et al.

2014/0165195 Al* 6/2014 Brdiczkaetal. 726/23
2014/0283026 Al* 9/2014 Striemetal. . .. 726/22
2014/0310808 Al* 10/2014 Yaoetal.cocevrvnnnnn.. 726/22
2014/0365646 Al 12/2014 Xiong

2015/0047026 Al* 2/2015 Neiletal.coceevennnen.. 726/22

OTHER PUBLICATIONS

Carey Nachenberg, et al.; Systems and Methods for Neutralizing
File-Format-Specific Exploits Included Within Files Contained
Within Electronic Communications; U.S. Appl. No. 13/418,332,
filed Mar. 12, 2012.

Leylya Yumer, et al.; Systems and Methods for Analyzing Zero-Day
Attacks; U.S. Appl. No. 13/901,977, filed May 24, 2013.

Kyumin Lee, et al.; Content-Driven Detection of Campaigns in
Social Media; CIKM’11; Oct. 24-28, 2011; ACM; Glasgow, Scot-
land, UK; http:/faculty.cs.tamu.edu/caverlee/pubs/leel L cikm.pdf,
as accessed Aug. 8, 2013.

Monowar H. Bhuyan, et al.; AOCD: An Adaptive Outlier Based
Coordinated Scan Detection Approach; International Journal of Net-
work Security; Nov. 2012; pp. 339-351; vol. 14, No. 6; http://www.
cs.uccs.edu/~jkalita/papers/2012/BhuyanMonowarlINS20 12 .pdf,
as accessed Aug. 8, 2013.

William Eberle, et al., Graph-based approaches to insider threat
detection; CSIIRW *09 Proceedings of the 5th Annual Workshop on
Cyber Security and Information Intelligence Research: Cyber Secu-
rity and Information Intelligence Challenges and Strategies; 2009;
Article No. 44; ACM,; http://dl.acm.org/citation.cfm?id=1558658, as
accessed Aug. 8, 2013.

Splunk, Inc.; Detecting Advanced Persistent Threats—Using Splunk
for APT; Jan. 4, 2012; Tech Brief; http://www.splunk.com/web__
assets/pdfs/secure/Splunk_ for APT_Tech_ Brief.pdf, as accessed
Aug. 8,2013.

Triumfant, Inc.; Detecting the Advanced Persistent Threat; Nov. 30,
2010; www.triumfant.com/advanced_ persistent_threat.asp, as
accessed Aug. 8, 2013.

EMC Corporation; Advanced Persistent Threat (APT) and Rootkit
Detection; 2012; http://www.siliciumsecurity.com/advanced-persis-
tent-threats-and-rootkits-detection/, as accessed Aug. 8, 2013.
Fanglu Guo, etal; Systems and Methods for Reducing False Positives
When Using Event-Correlation Graphs to Detect Attacks on Com-
puting Systems; U.S. Appl. No. 14/031,044, filed Sep. 19, 2013.
Colombe, Jeffrey B., et al., “Statistical profiling and visualization for
detection of malicious insider attacks on computer networks”, http://
dl.acm.org/citation.cfm?id=1029231, as accessed Nov. 13, 2013,
VizSEC/DMSEC ’04 Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, ACM, New
York, NY, (2004), 138-142.

Wang, Wei et al., “Diffusion and graph spectral methods for network
forensic analysis”, http://dl.acm.org/citation.cfm?id=1278956, as
accessed Nov. 13, 2013, NSPW *06 Proceedings of the 2006 work-
shop on New security paradigms, ACM, New York, NY, (2006),
99-106.

Julisch, Klaus “Clustering intrusion detection alarms to support root
cause analysis”, http://dl.acm.org/citation.cfm?id=950192, as
accessed Nov. 13, 2013, ACM Transactions on Information and Sys-
tem Security (TISSEC), vol. 6, Issue 4, ACM, New York, NY, (Nov.
2003), 443-471.

Treinen, James J., et al., “A framework for the application of asso-
ciation rule mining in large intrusion detection infrastructures”,
http://dl.acm.org/citation.cfm?id=2166375, as accessed Nov. 13,
2013, RAID’06 Proceedings of the 9th international conference on
Recent Advances in Intrusion Detection, Springer-Verlag Berlin,
Heidelberg, (2006), 1-18.

Gu, Guofei et al., “BotHunter: detecting malware infection through
IDS-driven dialog correlation”, http://dl.acm.org/citation.
cfm?id=1362915, as accessed Nov. 13, 2013, SS’07 Proceedings of
16th USENIX Security Symposium on USENIX Security Sympo-
sium, Article No. 12, USENIX Association, Berkeley, CA, (2007).
Valdes, Alfonso et al., “Probabilistic Alert Correlation”, http://dl.
acm.org/citation.cfm?id=670734, as accessed Nov. 13, 2013, RAID
’00 Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection, Springer-Verlag, London, UK,
(2001), 54-68.

Alsubhi, Khalid et al., “FuzMet: a fuzzy-logic based alert prioritiza-
tion engine for intrusion detection systems”, http://dl.acm.org/cita-
tion.cfm?id=2344711, as accessed Nov. 13, 2013, International Jour-
nal of Network Management, vol. 22 Issue 4, John Wiley & Sons,
Inc., New York, NY, (Jul. 2012).

Zamlot, Loai et al., “Prioritizing intrusion analysis using Dempster-
Shafer theory”, http://dl.acm.org/citation.cfm?id=2046694, as
accessed Nov. 13, 2013, AlSec 11 Proceedings of the 4th ACM
workshop on Security and artificial intelligence, ACM, New York,
NY, (2011), 59-70.

Oliner, Adam J., et al., “Community epidemic detection using time-
correlated anomalies”, http://dl.acm.org/citation.cfm?id=1894191,
as accessed Nov. 13, 2013, RAID’ 10 Proceedings of the 13th inter-
national conference on Recent advances in intrusion detection,
Springer-Verlag Berlin, Heidelberg, (2010), 360-381.

Ning, Peng et al., “Constructing attack scenarios through correlation
of intrusion alerts”, http://reeves-students.csc.ncsu.edu/papers-and-
other-stuft/2002-10-ccs-constructing-attack-scenarios-paper.pdf, as
accessed Nov. 13, 2013, CCS ’02 Proceedings of the 9th ACM
conference on Computer and communications security, ACM, Wash-
ington, DC, (Nov. 18-22, 2002), 245-254.

Wang, Wei et al., “A Graph Based Approach Toward Network Foren-
sics Analysis”, http://dl.acm.org/citation.cfm?id=1410238, as
accessed Nov. 13, 2013, ACM Transactions on Information and Sys-
tem Security (TISSEC), vol. 12, Issue 1, Article No. 4, ACM, New
York, NY, (Oct. 2008).

Valeur, Fredrik et al., “A Comprehensive Approach to Intrusion
Detection Alert Correlation”, http://dl.acm.org/citation.
¢fm?id=1038251, as accessed Nov. 13, 2013, IEEE Transactions on
Dependable and Secure Computing, vol. 1, Issue 3, IEEE Computer
Society Press, Los Alamitos, CA, (Jul. 2004), 146-169.

Tedesco, Gianni et al., “Real-Time Alert Correlation with Type
Graphs”, http://dl.acm.org/citation.cfm?id=1496279, as accessed

US 9,141,790 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Nov. 13,2013, ICISS ’08 Proceedings of the 4th International Con-
ference on Information Systems Security, Springer-Verlag Berlin,
Heidelberg, (2008), 173-187.

Wang, Wei et al., “Network Forensics Analysis with Evidence
Graphs”, http://www.dfrws.org/2005/proceedings/wang
evidencegraphs.pdf, as accessed Nov. 13, 2013, 2005 Digital Foren-
sic Research Workshop (DFRWS), New Orleans, LA, (2005).
Wang, Ting et al., “Microscopic Social Influence”, http://www.cc.
gatech.edu/~lingliv/papers/2012/TingWang-SDM2012.pdf, as
accessed Nov. 13, 2013, SDM 2012, (2012).

Ugander, Johan et al., “Balanced Label Propagation for Partitioning
Massive Graphs”, https://people.cam.cornell.edu/~jugander/papers/
wsdm13-blp.pdf, as accessed Nov. 13, 2013, WSDM’13, ACM,
Rome, Italy, (Feb. 4-8, 2013).

Ayday, Erman et al., “Iterative Trust and Reputation Management
Using Belief Propagation”, http://www.ece.gatech.edu/research/
labs/WCCL/BP__publications/BP-ITRM-journal pdf, as accessed
Nov. 13, 2013, IEEE Transactions on Dependable and Secure Com-
puting, vol. 9, No. 3, IEEE Computer Society, (May/Jun. 2012),
375-386.

Bruce McCorkendale, et al; Systems and Methods for Detecting
Malware; U.S. Appl. No. 13/422,702, filed Mar. 16, 2012.

Acar Tamersoy, et al; Systems and Methods for Adjusting Suspi-
ciousness Scores in Event-Correlation Graphs; U.S. Appl. No.
14/138,891; filed Dec. 23, 2013.

Paleari, Roberto et al.,“Automatic Generation of Remediation Pro-
cedures for Malware Infections”, https://www.usenix.org/legacy/
event/sec 10/tech/full__papers/Paleari.pdf, as accessed Feb. 6, 2014,
USENIX Security’ 10 Proceedings of the 19th USENIX conference
on Security, USENIX Association, Berkeley, CA, (2010).
“Combating Advanced Persistent Threats—How to prevent, detect,
and remediate APTs”, http://www.mcafee.com/us/resources/white-
papers/wp-combat-advanced-persist-threats.pdf, as accessed Feb. 6,
2014, McAfee, Inc., Santa Clara, CA, (2011).

“Advanced Persistent Threat (APT) Attack & Zero-Day Protection”,
http://www fireeye.com/, as accessed Feb. 6, 2014, FireEye, Inc.,
(20006).

“Advanced Threat Defense”, http://www.fidelissecurity.com/ad-
vanced-persistent-threat-protection, as accessed Feb. 6, 2014, Gen-
eral Dynamics Fidelis Cybersecurity Solutions, Inc., (2013).
“Mandiant for Security Operations”, https://www.mandiant.com/
products/mandiant-platform/security-operations, as accessed Feb. 6,
2014, Mandiant, A FireEye Company, (Mar. 1, 2013).

“Mandiant for Intelligent Response”, http://www.mandiant.com/
products/mandiant-platform/intelligent-response, as accessed Feb.
6, 2014, Mandiant, A FireEye Company, (Mar. 1, 2013).

“Solera Networks Inc”, http://www.soleranetworks.com/, as
accessed Feb. 6, 2014, (Feb. 16, 2005).

“LogRhythm, Inc.”, http://www.logrhythm.com/, as accessed Feb. 6,
2014, (Oct. 18, 2000).

Kevin Alejandro Roundy, et al; Systems and Methods for Using
Event-Correlation Graphs to Generate Remediation Procedures; U.S.
Appl. No. 14/221,703; filed Mar. 21, 2014.

Eberle, William et al., “Insider Threat Detection Using Graph-Bases
Approaches”, http://www.eecs.wsu.edu/-holder/pubs/
EberleCATCHO09.pdf, Cybersecurity Applications & Technology
Conference for Homeland Security, (Jan. 2009).

Constantin, Lucian, “Attackers used known exploit to steal customer
log-in credentials, vBulletin maker says”, http://www.networkworid.
com/article/2171967/access-control/attackers-used-known-exploit-
to-steal-customer-log-in-credentials--vbulletin-maker-sa.html, IDG
News Service, Network World, (Nov. 18, 2013).

“Recovery Manager for Active Directory Forest Edition”, http://
software.dell.com/documents/recovery-manager-for-active-direc-
tory-forest-edition-datasheet-26622 pdf, Dell, Inc., (Nov. 2013).
Scarfone, Karen et al., “Guide to Intrusion Detection and Prevention
Systems (IDPS)”, http://csrc.nist.gov/publications/nistpubs/800-94/
SP800-94, National Institute of Standards and Technology, Special
Publication 800-94, (Feb. 2007).

Dezert, Jean et al., “On the Validity of Dempster-Shafer Theory”,
Fusion 2012—15th International Conference on Information Fusion,
Singapour, Singapore, (Jul. 2012).

* cited by examiner

U.S. Patent

Sep. 22, 2015 Sheet 1 of 12 US 9,141,790 B2
System
100
Modules Database
102 120

Detecting Module
104

Constructing Module
106

Score-Calculating Module
108

Threshold-Determining
Module
110

Attack-Determining Module
112

Suspicious Events
122

Suspiciousness Scores
124

Event-Correlation Graphs
126

FIG. 1

U.S. Patent Sep. 22, 2015 Sheet 2 of 12 US 9,141,790 B2

200

\ Server

206

Detecting Module
104

v

Constructing Module | I

106

v

Score-Calculating Module
108

v

Threshold-Determining Module
110

v

Attack-Determining Module
112

Database
120

Network
204
Computing Device Computing Device
202(1) 202(N)
. eoee)
Detecting Module Detecting Module
104 104

FIG. 2

U.S. Patent Sep. 22, 2015 Sheet 3 of 12 US 9,141,790 B2

300

\

D
|

Detect a suspicious event involving a first actor within a computing system
302

l

Construct an event-correlation graph in response to detecting the suspicious event
involving the first actor
304

l

Calculate an attack score for the event-correlation graph
306

l

Determine that the attack score is greater than a predetermined threshold
308

l

Determine that the suspicious event may be part of an attack on the computing system
based at least in part on the attack score being greater than the predetermined
threshold
310

|
@

FIG. 3

US 9,141,790 B2

Sheet 4 of 12

Sep. 22, 2015

U.S. Patent

v 'OIld

ocy

cs'l'8lLelL

uifoelowey

2184 29t (0744
y \
A axa dde|oUOIYSBA\SIOONSBNGY] "0’ 0 Z\BuIBuaysal yseqysa|y welboldyo v A BX9"0[NSMOPUIM:D v A X8 18SNaIBMLUAS|00) adBMILA\BIEMWIA\SS[Y Welboldyo v
4
8ly
201d91e81D 0sv 2l41Ea.5
2014918810 20.id81E81D J014a1e8In
Jslulpold
A X9 PUIO\ZE WISISAS\SMOPUIM D 51
N 2014818810 ﬁw_u
1454 I
aeaynIeDpEaY
oy unybayuiogpeoy
oygel | dyHseloidxg 001918813
Oy Ih axa APUDSM\ZELUD)SAS\SMOPUIM| D v 9Xg 1aIo|dX8\SMOpUIAN D vS
i 108luold
joolujoold ozt 254 00Id91ea1D
9G¥ 108fupold
20ilda1eals
108lujo0id A axa xniaeezqoyeiep uonesiiddewacineysbuilias pue sjuswnoopy:o v

{

CIER -SR] Z0r
Adopyes 20id81e81D
204delesiD 4% 4 18fus0id

(0194

woo xudbizulawwbs A axajoqydopisapiwnoinesbunias pue sjUsWNIopy:o v

N
80% 1o8lupoid

(454

A mxw.LmEv_wE&mEmyw\»w/w;occ_;/”ou

N\
[444

18lujoold

a|l4e1e810

m XD’ SSISO\ZLWBISAS\SMOPUIMYD u

201d48yes8lD

peojumogid

0j801}i1I20PEOY

20id48)B81D)

axa"aJo|dxanlalo|dxs youisyunsayly weboidy:o 104

oEy

~N
vevy

00¥

US 9,141,790 B2

Sheet 5 of 12

Sep. 22, 2015

U.S. Patent

G ‘Ol

YO¥ Im ox8 AUOSM\ZE LUBISAS\SMOPUIM|:D u

108lujoold
8cl

m axa"xnineezqo\eiep uoneoldde\waoine\sbumas pue sjuslnoopy:o u

X

zor
009

US 9,141,790 B2

Sheet 6 of 12

Sep. 22, 2015

U.S. Patent

9 "OId

oLy
/

aeoljiieDpesy

unyBoxiuiogpeot

ayjel | dpHielodx3
X9 J2l0[dXB\SMOpUIM:D

¥O¥ IA X8 APUISM|ZEWDISAS|SMOPUIM\:D u

joslupold wolupoid
: ez ey

ﬁ axa xnineezqoyelep uoneolddeywaoineysbumes pue sjuswinoopy:o U

/

coy

a|i49pe8ID
Adopyes
20149)e81D) zet

ocy

A axajog\dopisap\waoine\sbulas pue sjuslInoop\:o u

N
80t

108(ujo0Id

ajeoliiedpesy
axa alo|dxanJalo|dxs Jaulsiunsaly weldboid,:o [sl0}4

"

009

US 9,141,790 B2

Sheet 7 of 12

Sep. 22, 2015

U.S. Patent

L Ol4

9l ocr
J \
A axa-ddejonuooyseq\s|oonsaneg L 0" 0" Z\euIbuaysay yseqisaly weiboidy:o v A BX3"O|\SMOPUIM:D v ﬁ aXa°1aSNalEMUIAS|00) SJeMLIAIEMLLASA|Y Welbold\:o U

L4

5134

9i4s1esd
201d91e8lD 0014818810 2014018010
18luldolg
A X8 PLUO\ZSLLBISAS\SMOPUIM:D FA™ 2
N\ 2014918310 ﬁWv
1454 obt
ClelilivEreleloo)]
PP unyboyuiogpeo
aned | dpHiaiondx3 O0IdBIEs.
YOP IA axa’ AP UOSM\ZEWBISAS\SMOPUIM| D v axa Jalojdxs\smopuIm 0 .
i 19lulooid
osiupold 9z 1494 2014818840
96y 108lupdoIg

2014318810

100lujo0ig A axa'xnIAeBZgo\BIEP Uoeoldde\wAacine\sbulias pue sjusWwnoopy:0 U

/

<oy

9|I481e8.1d
Adooyes
201d481e81) zch

20140)ESID
100100y m 5X9"IBWNSENZE WUBISAS\SMOPUIM,D u

N

oey
[444
woo xudbazulawwbs A oxo-joq\dopisep\waojnesbul}es pue spusWINI0Py:0 u 1slupoig
Y
iy 90% 108[ujo0.d
ETEE Vo) m aXa"SSISO\ZEWUBISAS\SMOPUIM:D u
pEOUMOQTd 2014818810 Obr <
44
8eoynIeDpesy
o0IdRIESID oxo alojdxaidalo|dxa jJeulsiunso|y wedboldy:o 20} 4 002
9et

US 9,141,790 B2

Sheet 8 of 12

Sep. 22, 2015

U.S. Patent

8 "OId

ocy

¢s'L'8L el

uibosjowsy

29t Qv
\

oLy
]

A axa ' dde|osjuOOYSEA\S|O0RSONG9] 00" Z\PuIbuaysa} ysea\sa|l Emhmoa/”ou A mxw.o__/wgovc_\s,“ou A 8X9°JaSNBIBMLUAS|00) SIBMLUA\SIBMLLA\SS]Y Emaoa/”ou

d
2134

20.481E81D 0or ajIdeleal)
20ld81ea1n o0ldereald 2014018810
18lupold
m 9X9" PLUDVZ CWIBISAS\SMOPUIM D sk
N\ 2014818910 ﬁw,n
Yl oFt
ojeoilitieopesy
o unybeyuiodpeo]
aiyel | dipHsedodx3 o0id91est)
YOv |ﬁ axe" AUDSMZELLIBISAS\SMOPUIM, D v axa Jalojdxe\SMOopUIM D v
i 108[u00id
18lupPold azh 454 D0I481881D
9sr 18luold
20Iid481R3U0
Joaluppoid A axe XnNINEEZ]O\EJEP Uohedlddeywacineysbuiies pue spusLINdopy:o v

/

a|i4918810 200

Adooyes
20idarealn Zcr

2014818310
walujooig A SX3" JIBWSENZSUSISAS\SMOP UL /”ov

N\

(0154
[444
woo xudbizulawwbs A axs jog\dopisep\LIAcINe\s Bulles pue sjuswnoopy:0 u Palujpoid
N
FAR 4 20 108[U00.d
slide1ealn m 9X9"SSISO\ZCWD)SAS\SMOPUIM\ID u
peojumogad 00Ido1esID ovp <
12474
9JedlILIeOPERY
20id81eaID axo'alo|dxantelo|dxs Joulsjunse|y welboidy:o 90 008
(2194

US 9,141,790 B2

Sheet 9 of 12

Sep. 22, 2015

U.S. Patent

oLy
Vi

6 ‘OId

a4

cs'L'8lclL

uibosjowsy [0oL]

29t 07474
\

o5’ dde|onUoOUSBO\S|I00NSEaNGT L 0°0 Z\BuIBusySs) yseqyss|i EE@QBUU A mxw.o__,w\so_o:_;/”ov A X5 I183NBIRMUIMS|00) SIEMUWIASIBMUIASS| Emhmo_a,”ou

ooidsress) [og]

4
8Ly

alidaieal) [o]
oaldsiess) [o]

oo

oouderesid [og] 20idereasd [o]

yoelujooud [og]

A X8’ PLUD\ZELIZ)SAS\SMOPUIMY D

4514

N
iy

Laq4

ooidareasd [o]
ysluppoid [ooL]

oLy

ooidaieald [0]]

144
ereoyiieopesy [og]

unybeyiuiodpeot [oot]
oelj dyHseiordx3 [ooL]
aXa 18.0|dXa\SMopuUIAN D

o0ldareal) [o]

op IA axe AJJUDSM|ZELIBISAS\SMOPUIMYD u .

8lupoid [00t]
oeluppoid ool \ _ ey ooidareasn [o]

9G¥ =\ 108lujoold [og]

A X8 XNINERZJO\BIEP UoleolddeiwAcine\sBuies pue sjuswinoopy:o u

s|i481e810 [0g]
Adooyes [og]
soidareas) [og]

[4v.4

ooldgayeal) [o]

1oeluppoid [0g] A X9 IBWHSBRZ L WB)SAS\SMOpUIM|ID v

ogt N\
444
woo xudbizulawwbs A axa-joq\dopisep\wnoine\sbunies pue sjuaLUNIop\:D v 1slupoid [os]
~N
487 walujoold [001]
i ali4e18840 [0] n BX8°SSISO\ZEWUB]SASISMOPUIMLD v
peojumogad [og] 204218910 0g] ovp <
vey
ejeoliienpesy [og]
oougereaid (0] axa'alo|dxantalo|dxa Joulejunsely welboudy:d 90t 00V

ocr

US 9,141,790 B2

Sheet 10 of 12

Sep. 22, 2015

U.S. Patent

0} OId

44

zg'LgLest [o]

uiboaroway [001]
29 074 4

9Ly
J \

A axa ddejoliuooyseqys|ooi1sal\gol 0 0 Z\euibuayisa) ysedqisaly wedboudy:o [] U mxw.o__/mgovc_g/”o [o] v A 9Xa"JasSNalBMLLA\S|00] SleMLABIBMLUASS|Y Wetboudy:o [] u

4

8l

sll4e1e810

ogr
soidsyesld [ogl 201481840 [(]

ooidsiess [og] 201do1BRID

10elujooid [os]

h axa’pwo\zgLusisAsysmopuimyo [0]

[4%174
N osaidaeal) [o] nw_\
1434 ort
opeoliiiodpeoy
(224 unybeyuiodpeot
olyjes | dpHlesoidxy o0ideresio o]
YOy Iﬁ axo AuosmzgwsisAsismopuiam:o [o] U axaJaso|dxarsmopuimy:o [ogel] VG
1osfurooid [o0L]
18lupold [00L] Qzh 1214 s0ld8yeslD

oSt polujoold [og]

J0ld8)esln

1slujoold [0oL] wam.xs_immgo@g uoneslddeiunoineysbumas pue syuswinoopy [o] v

EIERIEET o]
Adonjles
do1491ea19 (€]

414

o0.d91e8lD

1olupoid [os] A axa IBLUSENZEWa)SAs\sSmopuImy0 [Q] v

osy N
444
wod xudbizulawwibs [g] waw.Honﬁov_mec.SQ:m/wmcEwm puE sjpuawnoopy:d [p] v 1o8lupoid los]
N
2Ly 1sluisoid (oot]
EIEEN:EY) mxw.mw‘_wo/meQw\Am,wgouc_E“o [o] u
peoumoQad [og] =010 [og] oy o
ojeonenpEoY
ooigereasd [0] oxo alojdxaiaioldxo Joulsunsaly wesboidy:o [og] 1o} 4 00t

9ty

US 9,141,790 B2

Sheet 11 of 12

Sep. 22, 2015

U.S. Patent

LL "OI4

Alows|N weisAg

0zl
TEIT aseqeleq
20IA8(obelois
dnyoeg ZEIT
aoine(ebelo)g
Aewnd F4 74
A A a01na(821r8(]
jndu| Aeidsig
A A
A 4 y
vELL 0ctL 9cll clil
aoeusu| aoeusu| Joydepy aimponnselju|
obeloig ndu| Aeldsig uoledIuUNWWOoD
A A A
A 4 \ 4 A 4
< A A A A A >
y y y y y
201
mowmﬂmmc_ 0cL1 SLLL S8|Npo YLEL
UONEDIINUILIO? Je|jonuod O/ Ja|joiuo) Alowsy losseooid
9lLL

x_

oLLL

ws)sAg Bunndwo)

US 9,141,790 B2

Sheet 12 of 12

Sep. 22, 2015

U.S. Patent

N0zt |,

hIIN:Tg|

e

™

[

L)oLcl ¢
(NJO6ZT a0Inag
ao1neg
PY A 4 _
“ oecl

S¥Cl welo

o6zt | JaAIeg
solneq |

08¢l

dudgeq NYS

0ccl
wLID

— orel 001
G6cl JoAISS E@uw\Aw
Reny obelo)s |«
uabijeyu| 'y OLcl
wRIo
INJOSZT
201A8Q
N
°
[
1)o9zr
201naQ

\

00c¢!|
2IN}OBNYIIY HJOMIBN

US 9,141,790 B2

1
SYSTEMS AND METHODS FOR USING
EVENT-CORRELATION GRAPHS TO
DETECT ATTACKS ON COMPUTING
SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of International Appli-
cation No. PCT/CN2013/083228, filed 10 Sep. 2013, the
disclosure of which is incorporated, in its entirety, by this
reference.

BACKGROUND

In recent years, malicious programmers have created a
variety of sophisticated targeted attacks aimed at high-profile
or high-level entities, such as governments, corporations,
political organizations, defense contractors, or the like. In
many cases, the goal of such targeted attacks is to gain access
to highly sensitive or confidential information, such as finan-
cial information, defense-related information, and/or intel-
lectual property (e.g., source code), and/or to simply disrupt
an entity’s operations.

Many security software companies attempt to combat tar-
geted attacks by creating and deploying malware signatures
(e.g., hash functions that uniquely identify known malware)
to their customers on a regular basis. However, a significant
number of the above-mentioned attacks involve malware that
has been carefully crafted to take advantage of an as-yet-
undiscovered vulnerability of a particular application (com-
monly known as a “zero-day” exploit). As such, these attacks
are often difficult for traditional security software to detect
and/or neutralize since the exploits in question have yet to be
publicly discovered.

In addition to or as an alternative to a signature-based
approach, some security software companies may apply a
variety behavior-based heuristics to detect targeted attacks.
Unfortunately, a significant number of targeted attacks (e.g.,
advance persistent threats) may obscure their malicious
behaviors by moving at a slow pace such that traditional
security software may be unable to distinguish individual
malicious behaviors of the targeted attacks from legitimate
behaviors. Accordingly, the instant disclosure identifies an
addresses a need for systems and methods for detecting
attacks on computing systems.

SUMMARY

As will be described in greater detail below, the instant
disclosure generally relates to systems and methods for using
event-correlation graphs to detect attacks on computing sys-
tems. In one example, a computer-implemented method for
using event-correlation graphs to detect attacks on computing
systems may include (1) detecting a suspicious event involv-
ing a first actor within a computing system, (2) constructing,
in response to detecting the suspicious event involving the
first actor, an event-correlation graph that includes at least a
first node that represents the first actor, a second node that
represents a second actor, and an edge that interconnects the
first node and the second node and represents a suspicious
event involving the first actor and the second actor, (3) calcu-
lating, based at least in part on the additional suspicious event
involving the first actor and the second actor, an attack score
for the event-correlation graph, (4) determining that the
attack score is greater than a predetermined threshold, and (5)
determining, based at least in part on the attack score being

10

15

20

25

30

35

40

45

50

55

60

65

2

greater than the predetermined threshold, that the suspicious
event may be part of an attack on the computing system.

In some examples, the step of constructing the event-cor-
relation graph may include, for each actor represented by a
node within the event-correlation graph, (1) identifying a set
of events that involve the actor and at least one additional
actor and (2) adding, for each event within the set of events, an
additional node to the event-correlation graph that represents
the additional actor and an additional edge that interconnects
the node and additional node and represents the event involv-
ing the actor and the additional actor. In at least one example,
the set of events may include a set of suspicious events.

In some embodiments, the step of constructing the event-
correlation graph may include, for each actor represented by
anode within the event-correlation graph, (1) identifying a set
of suspicious events that involve the actor and no other actor
and (2) associating each suspicious event within the set of
suspicious events with the node that represents the actor.

In some examples, each suspicious event represented
within the event-correlation graph may be associated with a
suspiciousness score, and the step of calculating the attack
score for the event-correlation graph may be based at least in
part on the suspiciousness score of each suspicious event
represented within the event-correlation graph.

In some embodiments, the step of calculating the attack
score for the event-correlation graph may include (1) calcu-
lating a score for each edge within the event-correlation graph
based at least in part on a suspiciousness score associated with
the suspicious event represented by the edge and (2) calcu-
lating the attack score for the event-correlation graph based at
least in part on the score for each edge within the event-
correlation graph.

In some examples, the step of calculating the attack score
for the event-correlation graph may include (1) calculating a
score for each node within the event-correlation graph based
at least in part on a suspiciousness score associated with each
suspicious event associated with the node and (2) calculating
the attack score for the event-correlation graph based at least
in part on the score for each node within the event-correlation
graph.

In some embodiment, the computer-implemented method
for using event-correlation graphs to detect attacks on com-
puting systems may further include removing, before calcu-
lating an attack score for an event-correlation graph, at least
one low-scoring region of nodes from the event-correlation
graph based at least in part on a score of the low-scoring
region of nodes being less than a predetermined threshold.

In some examples, the computer-implemented method for
using event-correlation graphs to detect attacks on computing
systems may further include removing, before calculating an
attack score for an event-correlation graph, at least one
remote node from the event-correlation graph based at least in
part on a distance of the remote node from the first node being
greater than a predetermined threshold.

In some embodiments, the computer-implemented method
for using event-correlation graphs to detect attacks on com-
puting systems may further include displaying a graphical
representation of an event-correlation graph to an adminis-
trator of the computing system.

In one embodiment, a system for implementing the above-
described method may include (1) a detecting module that
detects a suspicious event involving a first actor within a
computing system, (2) a constructing module that constructs,
in response to detecting the suspicious event involving the
first actor, an event-correlation graph that includes at least a
first node that represents the first actor, a second node that
represents a second actor within the computing system, and

US 9,141,790 B2

3

an edge that interconnects the first node and the second node
and represents an additional suspicious event involving the
first actor and the second actor, (3) a score-calculating module
that calculates, based at least in part on the additional suspi-
cious event involving the first actor and the second actor, an
attack score for the event-correlation graph, (4) a threshold-
determining module that determines that the attack score is
greater than a predetermined threshold, (5) an attack-deter-
mining module that determines, based at least in part on the
attack score being greater than the predetermined threshold,
that the suspicious event may be part of an attack on the
computing system, and (6) at least one processor that
executes the detecting module, the constructing module, the
score-calculating module, the threshold-determining mod-
ule, and the attack-determining module.

In some examples, the above-described method may be
encoded as computer-readable instructions on a non-transi-
tory computer-readable-storage medium. For example, a
computer-readable-storage medium may include one or more
computer-executable instructions that, when executed by at
least one processor of a computing device, may cause the
computing device to (1) detect a suspicious event involving a
first actor within a computing system, (2) construct, in
response to detecting the suspicious event involving the first
actor, an event-correlation graph that includes at least a first
node that represents the first actor, a second node that repre-
sents a second actor, and an edge that interconnects the first
node and the second node and represents an additional sus-
picious event involving the first actor and the second actor, (3)
calculate, based at least in part on the additional suspicious
event involving the first actor and the second actor, an attack
score for the event-correlation graph, (4) determine that the
attack score is greater than a predetermined threshold, and (5)
determine, based at least in part on the attack score being
greater than the predetermined threshold, that the suspicious
event may be part of an attack on the computing system.

Features from any of the above-mentioned embodiments
may be used in combination with one another in accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings dem-
onstrate and explain various principles of the instant disclo-
sure.

FIG. 11s ablock diagram of an exemplary system for using
event-correlation graphs to detect attacks on computing sys-
tems.

FIG. 2 is a block diagram of an additional exemplary sys-
tem for using event-correlation graphs to detect attacks on
computing systems.

FIG. 3 is a flow diagram of an exemplary method for using
event-correlation graphs to detect attacks on computing sys-
tems.

FIG. 4 is a block diagram of an exemplary event-correla-
tion graph.

FIG. 5 is a block diagram of an exemplary event-correla-
tion graph.

FIG. 6 is a block diagram of an exemplary event-correla-
tion graph.

FIG. 7 is a block diagram of an exemplary event-correla-
tion graph.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 8 is a block diagram of an exemplary event-correla-
tion graph.

FIG. 9 is a block diagram of an exemplary event-correla-
tion graph.

FIG. 10 is a block diagram of an exemplary event-correla-
tion graph.

FIG. 11 is a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

FIG. 12 is a block diagram of an exemplary computing
network capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

Throughout the drawings, identical reference characters
and descriptions indicate similar, but not necessarily identi-
cal, elements. While the exemplary embodiments described
herein are susceptible to various modifications and alternative
forms, specific embodiments have been shown by way of
example in the drawings and will be described in detail
herein. However, the exemplary embodiments described
herein are not intended to be limited to the particular forms
disclosed. Rather, the instant disclosure covers all modifica-
tions, equivalents, and alternatives falling within the scope of
the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The present disclosure is generally directed to systems and
methods for using event-correlation graphs to detect attacks
on computing systems. As will be explained in greater detail
below, by using suspicious events to construct event-correla-
tion graphs based on how the actors involved in the suspicious
events are related by the suspicious events, the systems and
methods described herein may enable the detection of tar-
geted attacks on computing systems. Furthermore, in some
examples, by detecting attacks on computing systems using a
graph-based correlation approach, these systems and meth-
ods may generate information that may provide a greater
understanding of the attacks (e.g., the actors and methods
involved in the attacks). Embodiments of the instant disclo-
sure may also provide various other advantages and features,
as discussed in greater detail below.

The following will provide, with reference to FIGS. 1-2,
detailed descriptions of exemplary systems for using event-
correlation graphs to detect attacks on computing systems.
Detailed descriptions of corresponding computer-imple-
mented methods will also be provided in connection with
FIGS. 3-10. In addition, detailed descriptions of an exem-
plary computing system and network architecture capable of
implementing one or more of the embodiments described
herein will be provided in connection with FIGS. 11 and 12,
respectively.

FIG. 1 is a block diagram of an exemplary system 100 for
using event-correlation graphs to detect attacks on computing
systems. As illustrated in this figure, exemplary system 100
may include one or more modules 102 for performing one or
more tasks. For example, and as will be explained in greater
detail below, exemplary system 100 may include a detecting
module 104 that detects a suspicious event involving a first
actor within a computing system. Exemplary system 100 may
also include a constructing module 106 that constructs an
event-correlation graph in response to detecting the suspi-
cious event involving the first actor.

In addition, and as will be described in greater detail below,
exemplary system 100 may include a score-calculating mod-
ule 108 that calculates an attack score for the event-correla-
tion graph. Exemplary system 100 may also include a thresh-

US 9,141,790 B2

5

old-determining module 110 that determines that the attack
score is greater than a predetermined threshold. Exemplary
system 100 may further include an attack-determining mod-
ule 112 that determines that the suspicious event may be part
of an attack on the computing system based at least in part on
the attack score being greater than the predetermined thresh-
old. Although illustrated as separate elements, one or more of
modules 102 in FIG. 1 may represent portions of a single
module or application.

In certain embodiments, one or more of modules 102 in
FIG. 1 may represent one or more software applications or
programs that, when executed by a computing device, may
cause the computing device to perform one or more tasks. For
example, and as will be described in greater detail below, one
or more of modules 102 may represent software modules
stored and configured to run on one or more computing
devices, such as the devices illustrated in FIG. 2 (e.g., com-
puting devices 202(1)-(N) and/or server 206), computing sys-
tem 1110 in FIG. 11, and/or portions of exemplary network
architecture 1200 in FIG. 12. One or more of modules 102 in
FIG. 1 may also represent all or portions of one or more
special-purpose computers configured to perform one or
more tasks.

As illustrated in FIG. 1, exemplary system 100 may also
include one or more databases, such as database 120. In one
example, database 120 may include suspicious events 122 for
storing information about one or more suspicious events,
suspiciousness scores 124 for storing information about sus-
piciousness scores associated with suspicious events, and
event-correlation graphs 126 for storing information about
one or more event-correlation graphs.

Database 120 may represent portions of a single database
or computing device or a plurality of databases or computing
devices. For example, database 120 may represent a portion
of server 206 in FIG. 2, computing system 1110 in FIG. 11,
and/or portions of exemplary network architecture 1200 in
FIG. 12. Alternatively, database 120 in FIG. 1 may represent
one or more physically separate devices capable of being
accessed by a computing device, such as server 206 in FI1G. 2,
computing system 1110 in FIG. 11, and/or portions of exem-
plary network architecture 1200 in FIG. 12.

Exemplary system 100 in FIG. 1 may be implemented in a
variety of ways. For example, all or a portion of exemplary
system 100 may represent portions of exemplary system 200
in FIG. 2. As shown in FIG. 2, system 200 may include
computing devices 202(1)-(N) in communication with a
server 206 via a network 204. In one example, computing
devices 202(1)-(N) may be programmed with one or more of
modules 102 and/or may store all or a portion of the data in
database 120. Additionally or alternatively, server 206 may be
programmed with one or more of modules 102 and/or may
store all or a portion of the data in database 120.

In one embodiment, one or more of modules 102 from FIG.
1 may, when executed by at least one processor of one or more
of computing devices 202(1)-(N) and/or server 206, enable
one or more of computing devices 202(1)-(N) and/or server
206 to use event-correlation graphs to detect attacks on sys-
tem 200. For example, and as will be described in greater
detail below, one or more of modules 102 may cause one or
more of computing devices 202(1)-(N) and/or server 206 to
(1) detect a suspicious event involving a first actor within
system 200, (2) construct an event-correlation graph (e.g.,
event-correlation graph 400 in FIG. 4) in response to detect-
ing the suspicious event involving the first actor, (3) calculate
an attack score for the event-correlation graph based on the
suspicious event involving the first actor, (4) determine that
the attack score is greater than a predetermined threshold, and

10

15

20

25

30

35

40

45

50

55

60

65

6

(5) determine that the suspicious event may be part of an
attack on system 200 based at least in part on the attack score
being greater than the predetermined threshold.

Computing devices 202(1)-(N) generally represent any
type or form of computing device capable of reading com-
puter-executable instructions. Examples of computing
devices 202(1)-(N) include, without limitation, laptops, tab-
lets, desktops, servers, cellular phones, Personal Digital
Assistants (PDAs), multimedia players, routers, switches,
embedded systems, combinations of one or more of the same,
exemplary computing system 1110 in FIG. 11, portions of
exemplary network architecture 1200 in FIG. 12, or any other
suitable computing device. As illustrated in FIG. 2, comput-
ing devices 202(1)-(N) may each include detecting module
104 that may detect suspicious events that occur on each of
computing devices 202(1)-(N) and/or transmit information
about the suspicious events to server 206.

Server 206 generally represents any type or form of com-
puting device that is capable of reading computer-executable
instructions. Examples of server 206 include, without limita-
tion, application servers and database servers configured to
provide various database services and/or run certain software
applications.

Network 204 generally represents any medium or architec-
ture capable of facilitating communication or data transfer.
Examples of network 204 include, without limitation, an
intranet, a Wide Area Network (WAN), a Local Area Network
(LAN), a Personal Area Network (PAN), the Internet, Power
Line Communications (PLC), a cellular network (e.g., a Glo-
bal System for Mobile Communications (GSM) network),
exemplary network architecture 1200 in FIG. 12, or the like.
Network 204 may facilitate communication or data transfer
using wireless or wired connections. In one embodiment,
network 204 may facilitate communication between comput-
ing devices 202(1)-(N) and/or server 206.

FIG. 3 is a flow diagram of an exemplary computer-imple-
mented method 300 for using event-correlation graphs to
detect attacks on computing systems. The steps shown in FIG.
3 may be performed by any suitable computer-executable
code and/or computing system. In some embodiments, the
steps shown in FIG. 3 may be performed by one or more of the
components of system 100 in FIG. 1, system 200 in FIG. 2,
computing system 1110 in FIG. 11, and/or portions of exem-
plary network architecture 1200 in FIG. 12.

As illustrated in FIG. 3, at step 302 one or more of the
systems described herein may detect a suspicious event
involving a first actor within a computing system. For
example, detecting module 104 may, as part of server 206 in
FIG. 2, detect a suspicious event involving two processes on
computing device 202(1) (e.g., a suspicious event wherein a
process “‘viux.exe” injected code into another process
“wscntfy.exe”).

The term “suspicious event,” as used herein, generally
refers to any suspicious occurrence within a computing sys-
tem that may be indicative of an attack on the computing
system. In some examples, the term “suspicious event” may
refer to an occurrence of one or more behaviors by one or
more actors within a computing system that may be indicative
of'an attack on the computing system. Examples of suspicious
events may include, without limitation, a process injecting
code into another process, a browser visiting a suspicious
website, and the presence of an unknown file. In some
examples, suspicious events may be identified using rules that
define various attributes of suspicious events. In at least one
example, such rules may also define suspiciousness levels or
scores for suspicious events.

US 9,141,790 B2

7

As used herein, the term “actor” generally refers to any
entity that participates in or is otherwise involved with a
suspicious event. In some examples, the term “actor” may
refer to an entity that may perform an action (e.g., a source
actor) and/or an entity that may have an action performed on
it (e.g., a target actor). Two or more actors may be considered
related if they are both involved in the same suspicious event.
Examples of actors may include, without limitation, users,
processes, applications, computing devices, files, ports, net-
works, information resources (e.g., a website), or the like.

Returning to FIG. 3, the systems described herein may
perform step 302 in any suitable manner. In one example,
detecting module 104 may detect a suspicious event by
receiving information about the suspicious event. For
example, detecting module 104 may receive information
about a suspicious event from a system designed to detect,
collect, and/or manage information about suspicious events
(e.g., a SIEM, SIM, or SEM). Additionally or alternatively,
detecting module 104 may receive information about a sus-
picious event directly from the system that managed and/or
monitored the suspicious event (e.g., a firewall, router,
switch, virtual private network, antivirus system, intrusion-
detection and/or intrusion-prevention system, vulnerability
scanner, web server, web filter, proxy, database, mail and/or
groupware system, authentication server, and/or system log-
ger).

In some examples, detecting module 104 may represent a
portion of a system designed to detect, collect, and/or manage
information about suspicious events and/or a system
designed to manage and/or monitor events and may detect a
suspicious event as part of the system.

Additionally or alternatively, detecting module 104 may
detect a suspicious event by identifying information about a
suspicious event that is stored in a database. Using FIG. 2 as
an example, detecting module 104 may detect a suspicious
event by identifying information about the suspicious event
within suspicious events 122 of database 120.

Because the systems described herein may create event-
correlation graphs inresponse to detecting a suspicious event,
in at least one example, detecting module 104 may reduce the
number of event-correlation graphs created by detecting only
highly suspicious events (e.g., suspicious events that are most
likely to be part of an attack on a computing system).

At step 304, one or more of the systems described herein
may construct an event-correlation graph in response to
detecting the suspicious event involving the first actor. For
example, constructing module 106 may, as part of server 206
in FIG. 2, construct event-correlation graph 400 in FIG. 4 in
response to detecting the suspicious event on computing
device 202(1) involving the processes “viux.exe” and “wscnt-
fy.exe.”

As used herein, the term “event-correlation graph” gener-
ally refers to any logical or graphical representation of two or
more suspicious events that are correlated based on how the
actors involved in the suspicious events are related by the
suspicious events. In some examples, correlation graphs may
include (1) representations (e.g., nodes) of the actors involved
in suspicious events and (2) representations (e.g., edges) of
the suspicious events and/or the relationships between the
actors that are based on the suspicious events. FIG. 4 is a
block diagram of an exemplary event-correlation graph 400.
As shown in FIG. 4, event-correlation graph 400 may include
nodes 402-426 interconnected by directed edges 428-462. In
this example, nodes 402-426 may represent actors involved
with the correlated suspicious events represented by directed
edges 428-462, and directed edges 428-462 may represent the
correlated suspicious events and/or relationships between the

10

15

20

25

30

35

40

45

50

55

60

65

8

actors involved in the correlated suspicious events. As will be
explained in greater detail below, event-correlation graph 400
may represent an event-correlation graph whose creation was
triggered by detection of the suspicious event represented by
edge 428 that involved processes “viux.exe” and “wscnt-
fy.exe” represented by nodes 402 and 404, respectively.

As used herein, the term “node” generally refers to any
representation of an actor within a computing system. In
some examples, a node may also be used to represent suspi-
cious events that involve only one actor. The term “edge,” as
used herein, generally refers to any representation of a suspi-
cious event involving two or more actors within a computing
system and/or a relationship that exists between the two or
more actors as a result of the suspicious event. In some
examples, an edge may include a directed edge that represents
the direction of a relationship that exists between two or more
actors. In general, suspicious events may be associated with
the nodes and/or edges that represent them.

Returning to FIG. 3, the systems described herein may
perform step 304 in any suitable manner. In one example,
constructing module 106 may construct an event-correlation
graph by (1) creating an event-correlation graph that repre-
sents a single detected suspicious event (e.g., a triggering
suspicious event) and (2) iteratively expanding the event-
correlation graph to include additional related suspicious
events. Constructing module 106 may create an event-corre-
lation graph that represents a single suspicious event involv-
ing two actors (e.g., event-correlation graph 500 in FIG. 5) by
creating an event-correlation graph that includes a node for
each of the two actors and an edge for the suspicious event
that connects the two nodes. Similarly, constructing module
106 may create an event-correlation graph that represents a
single suspicious event involving only one actor by creating
an event-correlation graph that includes one node for the one
actor and by associating the suspicious event with the node.

In some examples, constructing module 106 may itera-
tively add additional related suspicious events to an event-
correlation graph by (1) identifying, for each actor repre-
sented within the event-correlation graph, a set of suspicious
events that involve the actor and an additional actor and (2)
adding a node to the event-correlation graph for each newly
identified actor and an edge for each newly identified suspi-
cious event. Additionally or alternatively, constructing mod-
ule 106 may iteratively add additional related suspicious
events to an event-correlation graph by (1) identifying, for
each actor represented within the event-correlation graph, a
set of suspicious events that involve the actor and no other
actor and (2) associating each newly identified suspicious
event with the node that represents the actor. In at least one
example, constructing module 106 may continue to expand
an event-correlation graph until no additional suspicious
events can be identified that involve actors represented within
the event-correlation graph.

Upon constructing an event-correlation graph, construct-
ing module 106 may store the event-correlation graph to
event-correlation graphs 126 in database 120. In some
examples, constructing module 106 may continue to itera-
tively expand event-correlation graphs as new suspicious
events are detected. For example, constructing module 106
may periodically update the event-correlation graphs stored
within event-correlation graphs 126 as new suspicious events
are detected.

FIGS. 5-8 illustrate how constructing module 106 may
iteratively construct event-correlation graph 400 in FIG. 4. In
the following examples, exemplary event-correlation graph
500 in FIG. 5, exemplary event-correlation graph 600 in FIG.
6, exemplary event-correlation graph 700 in FIG. 7, and

US 9,141,790 B2

9

exemplary event-correlation graph 800 in FIG. 8 may respec-
tively represent a first, second, third, and forth iteration of
event-correlation graph 400. Beginning with FIG. 5, con-
structing module 106 may generate exemplary event-corre-
lation graph 500 in response to detecting the suspicious event
wherein process “viux.exe” injected code into process
“wscntfy.exe.” As shown, constructing module 106 may gen-
erate event-correlation graph 500 such that it includes a node
402 representing process “viux.exe,” a node 404 representing
process “wscntfy.exe,” and an edge 428 that interconnects
nodes 402 and 404 and represents the suspicious event involv-
ing process “viux.exe” and process “wscntfy.exe.”

Upon constructing event-correlation graph 500 in FIG. 5,
constructing module 106 may construct event-correlation
graph 600 in FIG. 6 from event-correlation graph 500 by (1)
identifying additional suspicious events that involve the
actors represented in event-correlation graph 500 (e.g., pro-
cess “viux.exe” and process “wscntfy.exe”) and (2) adding,
for each identified suspicious event, a representation of the
suspicious event to event-correlation graph 500. For example,
constructing module 106 may determine that process “viux-
.exe” participated in five additional suspicious events (e.g., a
suspicious event involving the process “iexplore.exe”, three
suspicious events involving the process “bot.exe”, and a sus-
picious event involving the process “explorer.exe’”) and may
determine that process “wscntfy.exe” participated in no addi-
tional suspicious events. As shown in FIG. 6, constructing
module 106 may add these newly identified suspicious events
to event-correlation graph 500 by adding node 406 connected
to node 402 by edge 430 to represent the suspicious event
involving processes “viux.exe” and “iexplore.exe,” node 408
connected to node 402 by edge 432 to represent the three
suspicious events involving processes ‘‘viux.exe” and
“bot.exe,” and node 410 connected to node 402 by edge 434
to represent the suspicious event involving processes “viux-
.exe” and “explorer.exe.”

Upon constructing event-correlation graph 600 in FIG. 6,
constructing module 106 may construct exemplary event-
correlation graph 700 from event-correlation graph 600 by (1)
identifying additional suspicious events that involve the new
actors represented in event-correlation graph 600 (e.g., pro-
cess “iexplore.exe,” process “bot.exe,” and process “explor-
er.exe”) and (2) adding, for each identified suspicious event,
a representation of the suspicious event to event-correlation
graph 600 in FIG. 6. For example, constructing module 106
may determine that process “iexplore.exe” participated in six
additional suspicious events (e.g., a suspicious event involv-
ing itself, a suspicious event involving the website “sgm-
mvjnzrgpnx.com,” two suspicious events involving the pro-
cess “bot.exe,” and two suspicious events involving the
process “explorer.exe”). As shown in FIG. 7, constructing
module 106 may add these newly identified suspicious events
to event-correlation graph 600 by adding edge 436 intercon-
necting node 406 and itself to represent the suspicious event
involving processes “iexplore.exe” and itself, node 412 con-
nected to node 406 by edge 438 to represent the suspicious
event involving processes “iexplore.exe” and the website
“sgmmvinzrgpnx.com,” edge 440 interconnecting nodes 406
and 408 to represent the two suspicious events involving
processes “iexplore.exe” and “bot.exe,” and edge 442 inter-
connecting nodes 406 and 410 to represent the two suspicious
events involving processes “iexplore.exe” and “explor-
er.exe.” Constructing module 106 may also determine that
process “iexplore.exe” participated in one suspicious event
that involved no other actor (e.g., a suspicious event wherein
process “iexplore.exe” read a certificate). As shown in FIG. 7,
constructing module 106 may add this newly identified sus-

10

15

20

25

30

35

40

45

50

55

60

65

10

picious event to event-correlation graph 700 by associating
the event with node 406 (e.g., as shown in FIG. 7).

Constructing module 106 may also determine that process
“bot.exe” participated in five additional suspicious events
(e.g., the two suspicious events involving process “iexplore-
.exe” and two suspicious events involving the process
“cmd.exe”). As shown in FIG. 7, constructing module 106
may add these newly identified suspicious events to event-
correlation graph 600 by adding edge 440 interconnecting
nodes 406 and 408 to represent the two suspicious events
involving processes “bot.exe” and “iexplore.exe” and node
414 connected to node 408 by edge 444 to represent the two
suspicious events involving processes “bot.exe” and
“cmd.exe.”

Constructing module 106 may further determine that pro-
cess “explorer.exe” participated in twelve additional suspi-
cious events (e.g., a suspicious event involving process
“cmd.exe,” a suspicious event involving process “bashcon-
trolapp.exe,” two suspicious events involving process
“ilo.exe,” two suspicious events involving process
“vmwareuser.exe,” a suspicious event involving itself, two
suspicious events involving process “taskmgr.exe,” a suspi-
cious event involving process “csrss.exe,” and the two suspi-
cious events involving the process “iexplore.exe”). As shown
in FIG. 7, constructing module 106 may add these newly
identified suspicious events to event-correlation graph 600 by
adding edge 446 interconnecting nodes 410 and 414 to rep-
resent the suspicious event involving processes “explor-
erexe” and “cmd.exe,” node 416 connected to node 410 by
edge 448 to represent the suspicious event involving pro-
cesses “explorer.exe” and “bashcontrolapp.exe,” node 418
connected to node 410 by edge 450 to represent the two
suspicious events involving processes “explorer.exe” and
“ilo.exe,” node 420 connected to node 410 by edge 452 to
represent the two suspicious events involving processes
“explorer.exe” and “vmwareuser.exe,” edge 454 intercon-
necting node 410 and itself to represent the suspicious event
involving processes “‘explorer.exe” and itself, node 422 con-
nected to node 410 by edge 456 to represent the two suspi-
cious events involving processes “explorer.exe” and “task-
mgr.exe,” node 424 connected to node 410 by edge 458 to
represent the suspicious event involving processes “explor-
er.exe” and “csrss.exe,” and edge 442 interconnecting nodes
406 and 410 to represent the two suspicious events involving
processes “explorer.exe” and “iexplore.exe.”

Constructing module 106 may also determine that process
“explorer.exe” participated in three suspicious events that
involved no other actor (e.g., a suspicious event wherein
process “explorer.exe” generated hypertext-transfer-protocol
(HTTP) traffic, a suspicious event wherein process “explor-
er.exe” added a load point to a system registry, and a suspi-
cious event wherein process “explorer.exe” read a certificate).
As shown in FIG. 7, constructing module 106 may add these
newly identified suspicious events to event-correlation graph
700 by associating them with node 410.

Upon constructing event-correlation graph 700 in FIG. 7,
constructing module 106 may construct exemplary event-
correlation graph 800 by (1) identifying a set of additional
suspicious events that involve the new actors represented in
event-correlation graph 700 and (2) adding, for each identi-
fied suspicious event, a representation of the suspicious event
to event-correlation graph 700. For example, constructing
module 106 may determine that process “cmd.exe” partici-
pated in one additional suspicious event (e.g., a suspicious
event involving process “bashcontrolapp.exe,” that process
“ilo.exe” participated in one additional suspicious event (e.g.,
a suspicious event involving process the address

US 9,141,790 B2

11

“172.18.1.52,” and that every other newly added actor was
involved in no additional suspicious events. As shown in FIG.
8, constructing module 106 may add these newly identified
suspicious events to event-correlation graph 700 by adding
edge 460 interconnecting nodes 414 and 416 to represent the
suspicious event involving processes “cmd.exe” and “bash-
controlapp.exe” and node 426 connected to node 418 by edge
462 to represent the suspicious event involving process
“ilo.exe” and the address “172.18.1.52.” Upon constructing
event-correlation graph 800 in FIG. 8, constructing module
106 may determine that event-correlation graph 800 is com-
plete by determining that no newly added actors participated
in any additional suspicious events.

Returning to FIG. 3 at step 306, one or more of the systems
described herein may calculate an attack score for the event-
correlation graph. For example, score-calculating module
108 may, as part of server 206 in FIG. 2, calculate an attack
score for event-correlation graph 400 in FIG. 4.

The systems described herein may perform step 306 in any
suitable manner. For example, score-calculating module 108
may calculate an attack score for an event-correlation graph
by (1) identifying all or a portion of the suspicious events
represented within the event-correlation graph, (2) identify-
ing a suspiciousness score associated with each of the iden-
tified suspicious events, and (3) using the suspiciousness
scores to calculate an attack score for the event-correlation
graph. In one example, score-calculating module 108 may
calculate an attack score for an event-correlation graph by
simply adding together the suspiciousness scores of each
suspicious event represented within the event-correlation
graph.

Using FIG. 9 as an example, score-calculating module 108
may calculate an attack score for event-correlation graph 400
by (1) identifying all of the suspicious events represented
within the event-correlation graph, (2) identifying a suspi-
ciousness score associated with each of the identified suspi-
cious events (e.g., as illustrated in FIG. 9 by the bracketed
numbers next to each suspicious event in event-correlation
graph 400), and (3) determining that the attack score for
event-correlation graph 400 equals 1190 by adding together
the suspiciousness scores of each suspicious event repre-
sented within event-correlation graph 400.

Additionally or alternatively, score-calculating module
108 may calculate an attack score for an event-correlation
graph based on scores for each node and/or edge within the
event-correlation graph. For example, score-calculating mod-
ule 108 may calculate an attack score for an event-correlation
graph by (1) calculating a score for each edge within the
event-correlation graph based on the suspiciousness scores
associated with the suspicious events represented by the edge,
(2) calculating a score for each node within the event-corre-
lation graph based at least in part on the suspiciousness scores
associated with each suspicious event associated with the
node, and (3) summing the scores of each node and edge
within the event-correlation graph.

Using FIG. 10 as an example, score-calculating module
108 may calculate an attack score for event-correlation graph
400 by (1) calculating a score for each edge within event-
correlation graph 400 based on the suspiciousness scores
associated with the suspicious events represented by the edge
(e.g., as illustrated in FIG. 10 by the bracketed number next to
each edge in event-correlation graph 400), (2) calculating a
score for each node within event-correlation graph 400 based
at least in part on the suspiciousness scores associated with
each suspicious event associated with the node (e.g., as illus-
trated in FIG. 10 by the bracketed number within each node in
event-correlation graph 400), and (3) determining that the

10

15

20

25

30

35

40

45

50

55

60

65

12

attack score for event-correlation graph 400 equals 1190 by
summing the scores of each node and edge within event-
correlation graph 400.

Returning to FIG. 3 in addition to or as an alternative to
calculating attack scores base on the suspiciousness scores of
suspicious events, score-calculating module 108 may calcu-
late an attack score for an event-correlation graph based on
the size of the event-correlation graph. For example, score-
calculating module 108 may calculate an attack score for an
event-correlation graph based on the number of nodes, edges,
and/or suspicious events within the event-correlation graph.

In some instances, it may be possible that many benign
actors may become part of an event-correlation graph due to
abenign suspicious event. Score-calculating module 108 may
address this problem by pruning the benign actors from the
event-correlation graph. In some examples, score-calculating
module 108 may prune benign actors from an event-correla-
tion graph by removing low-scoring regions of nodes from
the event-correlation graph before calculating an attack score
for the event-correlation graph. A region of nodes may
include any node within an event-correlation graph along
with any other nodes that are within a predetermined distance
from the node. In at least one example, score-calculating
module 108 may prune benign actors from an event-correla-
tion graph by calculating a score for each region of nodes
within the event-correlation graph and by removing regions
of' nodes whose scores fall below a predetermined threshold.

Additionally or alternatively, score-calculating module
108 may prune benign actors from an event-correlation graph
by removing remote nodes from the event-correlation graph
based on the distance of the remote node from the node
representing the actor involved in the suspicious event that
triggered the construction of the event-correlation graph
being greater than predetermined threshold.

At step 308, one or more of the systems described herein
may determine that the attack score is greater than a prede-
termined threshold. For example, threshold-determining
module 110 may, as part of server 206 in FIG. 2, determine
that the attack score for event-correlation graph 400 in FIG. 4
is greater than a predetermined threshold.

The systems described herein may perform step 308 in any
suitable manner. In one example, threshold-determining
module 110 may determine that the attack score is greater
than a predetermined threshold that was provided by an
administrator or a user of a computing system. In another
example, threshold-determining module 110 may determine
that the attack score is greater than a predetermined threshold
that is based on the attack scores of other event-correlation
graphs. For example, threshold-determining module 110 may
determine that the attack score is greater than an average
attack score and/or determine that the attack score is greater
than the attack scores of a predetermined percentage of other
event-correlation graphs. By using a threshold based on other
event-correlation graphs, threshold-determining module 110
may identify only event-correlation graphs that are most
likely to be part of an attack on a computing system.

At step 310, one or more of the systems described herein
may determine, based at least in part on the attack score being
greater than the predetermined threshold, that the suspicious
event may be part of an attack on the computing system. For
example, attack-determining module 112 may, as part of
server 206 in FIG. 2, determine that the suspicious event
involving the processes “viux.exe” and “wscntfy.exe” may be
part of an attack on computing device 202(1) based at least in
part on attack score of event-correlation graph 400 in FIG. 4
being greater than a predetermined threshold.

US 9,141,790 B2

13

The systems described herein may perform step 310 in any
suitable manner. For example upon determining that a suspi-
cious event may be part of an attack on a computing system,
attack-determining module 112 may alert an administrator or
a user of the computing system of the detected attack. Addi-
tionally or alternatively, attack-determining module 112 may
block the attack and/or protect the computing system from the
attack. For example, attack-determining module 112 may
quarantine the actors involved in the attack.

In some examples, attack-determining module 112 may
generate and display graphical representations of event-cor-
relation graphs to an administrator or user of the computing
system such that the administrator or user may analyze the
attacks that they represent. In some examples, the systems
described herein may label nodes and edges within an event-
correlation graph with information about the actors and/or the
suspicious events that they represent (e.g., as illustrated in
FIGS. 4 and 9). By presenting graphical representations of
event-correlation graphs, attack-determining module 112
may provide forensic information about the contexts within
which attacks occur. Upon completion of step 310, exemplary
method 300 in FIG. 3 may terminate.

As explained above, by using suspicious events to con-
struct event-correlation graphs based on how the actors
involved in the suspicious events are related by the suspicious
events, the systems and methods described herein may enable
the detection of targeted attacks on computing systems. Fur-
thermore, in some examples, by detecting attacks on comput-
ing systems using a graph-based correlation approach, these
systems and methods may generate information that may
provide a greater understanding of the attacks (e.g., the actors
and methods involved in the attacks).

For example, the systems and methods described herein
may detect an attack on a computing system by (1) collecting
information about suspicious events from one or more host-
based or network-based detectors, (2) using the suspicious
events to build an event-correlation graph based on how the
actors involved in the suspicious events are related by the
suspicious events, (3) calculating a score for the event-corre-
lation graph based on the suspicious events contained within
the event-correlation graph, and (4) determining that the
score for the event-correlation graph indicates that the suspi-
cious events are likely part of an attack on the computing
system.

FIG. 11 is a block diagram of an exemplary computing
system 1110 capable of implementing one or more of the
embodiments described and/or illustrated herein. For
example, all or a portion of computing system 1110 may
perform and/or be a means for performing, either alone or in
combination with other elements, one or more of the steps
described herein (such as one or more of the steps illustrated
in FIG. 3). All or a portion of computing system 1110 may
also perform and/or be a means for performing any other
steps, methods, or processes described and/or illustrated
herein.

Computing system 1110 broadly represents any single or
multi-processor computing device or system capable of
executing computer-readable instructions. Examples of com-
puting system 1110 include, without limitation, workstations,
laptops, client-side terminals, servers, distributed computing
systems, handheld devices, or any other computing system or
device. In its most basic configuration, computing system
1110 may include at least one processor 1114 and a system
memory 1116.

Processor 1114 generally represents any type or form of
physical processing unit (e.g., a hardware-implemented cen-
tral processing unit) capable of processing data or interpret-

10

15

20

25

30

35

40

45

50

55

60

14

ing and executing instructions. In certain embodiments, pro-
cessor 1114 may receive instructions from a software
application or module. These instructions may cause proces-
sor 1114 to perform the functions of one or more of the
exemplary embodiments described and/or illustrated herein.

System memory 1116 generally represents any type or
form of volatile or non-volatile storage device or medium
capable of storing data and/or other computer-readable
instructions. Examples of system memory 1116 include,
without limitation, Random Access Memory (RAM), Read
Only Memory (ROM), flash memory, or any other suitable
memory device. Although not required, in certain embodi-
ments computing system 1110 may include both a volatile
memory unit (such as, for example, system memory 1116)
and a non-volatile storage device (such as, for example, pri-
mary storage device 1132, as described in detail below). In
one example, one or more of modules 102 from FIG. 1 may be
loaded into system memory 1116.

In certain embodiments, exemplary computing system
1110 may also include one or more components or elements
in addition to processor 1114 and system memory 1116. For
example, as illustrated in FIG. 11, computing system 1110
may include a memory controller 1118, an Input/Output (I/O)
controller 1120, and a communication interface 1122, each of
which may be interconnected via a communication infra-
structure 1112. Communication infrastructure 1112 gener-
ally represents any type or form of infrastructure capable of
facilitating communication between one or more components
of a computing device. Examples of communication infra-
structure 1112 include, without limitation, a communication
bus (such as an Industry Standard Architecture (ISA), Periph-
eral Component Interconnect (PCI), PCI Express (PCle), or
similar bus) and a network.

Memory controller 1118 generally represents any type or
form of device capable of handling memory or data or con-
trolling communication between one or more components of
computing system 1110. For example, in certain embodi-
ments memory controller 1118 may control communication
between processor 1114, system memory 1116, and I/O con-
troller 1120 via communication infrastructure 1112.

1/0O controller 1120 generally represents any type or form
of module capable of coordinating and/or controlling the
input and output functions of a computing device. For
example, in certain embodiments I/O controller 1120 may
control or facilitate transfer of data between one or more
elements of computing system 1110, such as processor 1114,
system memory 1116, communication interface 1122, dis-
play adapter 1126, input interface 1130, and storage interface
1134.

Communication interface 1122 broadly represents any
type or form of communication device or adapter capable of
facilitating communication between exemplary computing
system 1110 and one or more additional devices. For
example, in certain embodiments communication interface
1122 may facilitate communication between computing sys-
tem 1110 and a private or public network including additional
computing systems. Examples of communication interface
1122 include, without limitation, a wired network interface
(such as a network interface card), a wireless network inter-
face (such as a wireless network interface card), a modem,
and any other suitable interface. In at least one embodiment,
communication interface 1122 may provide a direct connec-
tion to a remote server via a direct link to a network, such as
the Internet. Communication interface 1122 may also indi-
rectly provide such a connection through, for example, alocal
area network (such as an Ethernet network), a personal area

US 9,141,790 B2

15

network, a telephone or cable network, a cellular telephone
connection, a satellite data connection, or any other suitable
connection.

In certain embodiments, communication interface 1122
may also represent a host adapter configured to facilitate
communication between computing system 1110 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1394 host adapters, Advanced Technology Attach-
ment (ATA), Parallel ATA (PATA), Serial ATA (SATA), and
External SATA (eSATA) host adapters, Fibre Channel inter-
face adapters, Ethernet adapters, or the like. Communication
interface 1122 may also allow computing system 1110 to
engage in distributed or remote computing. For example,
communication interface 1122 may receive instructions from
a remote device or send instructions to a remote device for
execution.

As illustrated in FIG. 11, computing system 1110 may also
include at least one display device 1124 coupled to commu-
nication infrastructure 1112 via a display adapter 1126. Dis-
play device 1124 generally represents any type or form of
device capable of visually displaying information forwarded
by display adapter 1126. Similarly, display adapter 1126 gen-
erally represents any type or form of device configured to
forward graphics, text, and other data from communication
infrastructure 1112 (or from a frame buffer, as known in the
art) for display on display device 1124.

As illustrated in FIG. 11, exemplary computing system
1110 may also include at least one input device 1128 coupled
to communication infrastructure 1112 via an input interface
1130. Input device 1128 generally represents any type or form
of'input device capable of providing input, either computer or
human generated, to exemplary computing system 1110.
Examples of input device 1128 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device.

As illustrated in FIG. 11, exemplary computing system
1110 may also include a primary storage device 1132 and a
backup storage device 1133 coupled to communication infra-
structure 1112 via a storage interface 1134. Storage devices
1132 and 1133 generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. For example, storage devices
1132 and 1133 may be a magnetic disk drive (e.g., a so-called
hard drive), a solid state drive, a floppy disk drive, a magnetic
tape drive, an optical disk drive, a flash drive, or the like.
Storage interface 1134 generally represents any type or form
of interface or device for transferring data between storage
devices 1132 and 1133 and other components of computing
system 1110. In one example, database 120 from FIG. 1 may
be stored in primary storage device 1132.

In certain embodiments, storage devices 1132 and 1133
may be configured to read from and/or write to a removable
storage unit configured to store computer software, data, or
other computer-readable information. Examples of suitable
removable storage units include, without limitation, a floppy
disk, a magnetic tape, an optical disk, a flash memory device,
or the like. Storage devices 1132 and 1133 may also include
other similar structures or devices for allowing computer
software, data, or other computer-readable instructions to be
loaded into computing system 1110. For example, storage
devices 1132 and 1133 may be configured to read and write
software, data, or other computer-readable information. Stor-

10

15

20

25

30

35

40

45

50

55

60

65

16

age devices 1132 and 1133 may also be a part of computing
system 1110 or may be a separate device accessed through
other interface systems.

Many other devices or subsystems may be connected to
computing system 1110. Conversely, all of the components
and devices illustrated in FIG. 11 need not be present to
practice the embodiments described and/or illustrated herein.
The devices and subsystems referenced above may also be
interconnected in different ways from that shown in FIG. 11.
Computing system 1110 may also employ any number of
software, firmware, and/or hardware configurations. For
example, one or more of the exemplary embodiments dis-
closed herein may be encoded as a computer program (also
referred to as computer software, software applications, com-
puter-readable instructions, or computer control logic) on a
computer-readable-storage medium. The phrase “computer-
readable-storage medium” generally refers to any form of
device, carrier, or medium capable of storing or carrying
computer-readable instructions. Examples of computer-read-
able-storage media include, without limitation, transmission-
type media, such as carrier waves, and non-transitory-type
media, such as magnetic-storage media (e.g., hard disk drives
and floppy disks), optical-storage media (e.g., Compact Disks
(CDs) or Digital Video Disks (DVDs)), electronic-storage
media (e.g., solid-state drives and flash media), and other
distribution systems.

The computer-readable-storage medium containing the
computer program may be loaded into computing system
1110. All or a portion of the computer program stored on the
computer-readable-storage medium may then be stored in
system memory 1116 and/or various portions of storage
devices 1132 and 1133. When executed by processor 1114, a
computer program loaded into computing system 1110 may
cause processor 1114 to perform and/or be a means for per-
forming the functions of one or more of the exemplary
embodiments described and/or illustrated herein. Addition-
ally or alternatively, one or more of the exemplary embodi-
ments described and/or illustrated herein may be imple-
mented in firmware and/or hardware. For example,
computing system 1110 may be configured as an Application
Specific Integrated Circuit (ASIC) adapted to implement one
or more of the exemplary embodiments disclosed herein.

FIG. 12 is a block diagram of an exemplary network archi-
tecture 1200 in which client systems 1210, 1220, and 1230
and servers 1240 and 1245 may be coupled to a network 1250.
As detailed above, all or a portion of network architecture
1200 may perform and/or be a means for performing, either
alone or in combination with other elements, one or more of
the steps disclosed herein (such as one or more of the steps
illustrated in FIG. 3). All or a portion of network architecture
1200 may also be used to perform and/or be a means for
performing other steps and features set forth in the instant
disclosure.

Client systems 1210, 1220, and 1230 generally represent
any type or form of computing device or system, such as
exemplary computing system 1110 in FIG. 11. Similarly,
servers 1240 and 1245 generally represent computing devices
or systems, such as application servers or database servers,
configured to provide various database services and/or run
certain software applications. Network 1250 generally repre-
sents any telecommunication or computer network including,
for example, an intranet, a WAN, a LAN, a PAN, or the
Internet. In one example, client systems 1210, 1220, and/or
1230 and/or servers 1240 and/or 1245 may include all or a
portion of system 100 from FIG. 1.

As illustrated in FIG. 12, one or more storage devices
1260(1)-(N) may be directly attached to server 1240. Simi-

US 9,141,790 B2

17

larly, one or more storage devices 1270(1)-(N) may be
directly attached to server 1245. Storage devices 1260(1)-(N)
and storage devices 1270(1)-(N) generally represent any type
or form of storage device or medium capable of storing data
and/or other computer-readable instructions. In certain
embodiments, storage devices 1260(1)-(N) and storage
devices 1270(1)-(N) may represent Network-Attached Stor-
age (NAS) devices configured to communicate with servers
1240 and 1245 using various protocols, such as Network File
System (NFS), Server Message Block (SMB), or Common
Internet File System (CIFS).

Servers 1240 and 1245 may also be connected to a Storage
Area Network (SAN) fabric 1280. SAN fabric 1280 generally
represents any type or form of computer network or architec-
ture capable of facilitating communication between a plural-
ity of storage devices. SAN fabric 1280 may facilitate com-
munication between servers 1240 and 1245 and a plurality of
storage devices 1290(1)-(N) and/or an intelligent storage
array 1295. SAN fabric 1280 may also facilitate, via network
1250 and servers 1240 and 1245, communication between
client systems 1210, 1220, and 1230 and storage devices
1290(1)-(N) and/or intelligent storage array 1295 in such a
manner that devices 1290(1)-(N) and array 1295 appear as
locally attached devices to client systems 1210, 1220, and
1230. As with storage devices 1260(1)-(N) and storage
devices 1270(1)-(N), storage devices 1290(1)-(N) and intel-
ligent storage array 1295 generally represent any type or form
of storage device or medium capable of storing data and/or
other computer-readable instructions.

In certain embodiments, and with reference to exemplary
computing system 1110 of FIG. 11, a communication inter-
face, such as communication interface 1122 in FIG. 11, may
be used to provide connectivity between each client system
1210, 1220, and 1230 and network 1250. Client systems
1210, 1220, and 1230 may be able to access information on
server 1240 or 1245 using, for example, a web browser or
other client software. Such software may allow client systems
1210, 1220, and 1230 to access data hosted by server 1240,
server 1245, storage devices 1260(1)-(N), storage devices
1270(1)-(N), storage devices 1290(1)-(N), or intelligent stor-
age array 1295. Although FIG. 12 depicts the use of a network
(such as the Internet) for exchanging data, the embodiments
described and/or illustrated herein are not limited to the Inter-
net or any particular network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and executed
by server 1240, server 1245, storage devices 1260(1)-(N),
storage devices 1270(1)-(N), storage devices 1290(1)-(N),
intelligent storage array 1295, or any combination thereof.
All oraportion of one or more of the exemplary embodiments
disclosed herein may also be encoded as a computer program,
stored in server 1240, run by server 1245, and distributed to
client systems 1210, 1220, and 1230 over network 1250.

As detailed above, computing system 1110 and/or one or
more components of network architecture 1200 may perform
and/or be a means for performing, either alone or in combi-
nation with other elements, one or more steps of an exemplary
method for using event-correlation graphs to detect attacks on
computing systems.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo-

10

15

20

25

30

35

40

45

50

55

60

65

18

sure of components contained within other components
should be considered exemplary in nature since many other
architectures can be implemented to achieve the same func-
tionality.

Insome examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a cloud-computing or
network-based environment. Cloud-computing environ-
ments may provide various services and applications via the
Internet. These cloud-based services (e.g., software as a ser-
vice, platform as a service, infrastructure as a service, etc.)
may be accessible through a web browser or other remote
interface. Various functions described herein may be pro-
vided through a remote desktop environment or any other
cloud-based computing environment.

In various embodiments, all or a portion of exemplary
system 100 in FIG. 1 may facilitate multi-tenancy within a
cloud-based computing environment. In other words, the
software modules described herein may configure a comput-
ing system (e.g., a server) to facilitate multi-tenancy for one
or more of the functions described herein. For example, one
or more of the software modules described herein may pro-
gram a server to enable two or more clients (e.g., customers)
to share an application that is running on the server. A server
programmed in this manner may share an application, oper-
ating system, processing system, and/or storage system
among multiple customers (i.e., tenants). One or more of the
modules described herein may also partition data and/or con-
figuration information of a multi-tenant application for each
customer such that one customer cannot access data and/or
configuration information of another customer.

According to various embodiments, all or a portion of
exemplary system 100 in FIG. 1 may be implemented within
a virtual environment. For example, modules and/or data
described herein may reside and/or execute within a virtual
machine. As used herein, the phrase “virtual machine” gen-
erally refers to any operating system environment that is
abstracted from computing hardware by a virtual machine
manager (e.g., a hypervisor). Additionally or alternatively,
the modules and/or data described herein may reside and/or
execute within a virtualization layer. As used herein, the
phrase “virtualization layer” generally refers to any data layer
and/or application layer that overlays and/or is abstracted
from an operating system environment. A virtualization layer
may be managed by a software virtualization solution (e.g., a
file system filter) that presents the virtualization layer as
though it were part of an underlying base operating system.
For example, a software virtualization solution may redirect
calls that are initially directed to locations within a base file
system and/or registry to locations within a virtualization
layer.

Insome examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a mobile computing
environment. Mobile computing environments may be
implemented by a wide range of mobile computing devices,
including mobile phones, tablet computers, e-book readers,
personal digital assistants, wearable computing devices (e.g.,
computing devices with a head-mounted display, smart-
watches, etc.), and the like. In some examples, mobile com-
puting environments may have one or more distinct features,
including, for example, reliance on battery power, presenting
only one foreground application at any given time, remote
management features, touchscreen features, location and
movement data (e.g., provided by Global Positioning Sys-
tems, gyroscopes, accelerometers, etc.), restricted platforms
that restrict modifications to system-level configurations and/
or that limit the ability of third-party software to inspect the
behavior of other applications, controls to restrict the instal-

US 9,141,790 B2

19

lation of applications (e.g., to only originate from approved
application stores), etc. Various functions described herein
may be provided for a mobile computing environment and/or
may interact with a mobile computing environment.

In addition, all or a portion of exemplary system 100 in
FIG. 1 may represent portions of, interact with, consume data
produced by, and/or produce data consumed by one or more
systems for information management. As used herein, the
phrase “information management” may refer to the protec-
tion, organization, and/or storage of data. Examples of sys-
tems for information management may include, without limi-
tation, storage systems, backup systems, archival systems,
replication systems, high availability systems, data search
systems, virtualization systems, and the like.

In some embodiments, all or a portion of exemplary system
100 in FIG. 1 may represent portions of, produce data pro-
tected by, and/or communicate with one or more systems for
information security. As used herein, the phrase “information
security” may refer to the control of access to protected data.
Examples of systems for information security may include,
without limitation, systems providing managed security ser-
vices, data loss prevention systems, identity authentication
systems, access control systems, encryption systems, policy
compliance systems, intrusion detection and prevention sys-
tems, electronic discovery systems, and the like.

According to some examples, all or a portion of exemplary
system 100 in FIG. 1 may represent portions of, communicate
with, and/or receive protection from one or more systems for
endpoint security. As used herein, the phrase “endpoint secu-
rity” may refer to the protection of endpoint systems from
unauthorized and/or illegitimate use, access, and/or control.
Examples of systems for endpoint protection may include,
without limitation, anti-malware systems, user authentication
systems, encryption systems, privacy systems, spam-filtering
services, and the like.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or discussed
in a particular order, these steps do not necessarily need to be
performed in the order illustrated or discussed. The various
exemplary methods described and/or illustrated herein may
also omit one or more of the steps described or illustrated
herein or include additional steps in addition to those dis-
closed.

While various embodiments have been described and/or
illustrated herein in the context of fully functional computing
systems, one or more of these exemplary embodiments may
be distributed as a program product in a variety of forms,
regardless of the particular type of computer-readable-stor-
age media used to actually carry out the distribution. The
embodiments disclosed herein may also be implemented
using software modules that perform certain tasks. These
software modules may include script, batch, or other execut-
able files that may be stored on a computer-readable storage
medium or in a computing system. In some embodiments,
these software modules may configure a computing system to
perform one or more of the exemplary embodiments dis-
closed herein.

In addition, one or more of the modules described herein
may transform data, physical devices, and/or representations
of physical devices from one form to another. For example,
one or more of the modules recited herein may receive data
about one or more suspicious events to be transformed, trans-
form the data about one or more suspicious events into an
event-correlation graph, output a result of the transformation
to an attack-detecting system capable of determining whether

10

15

20

25

30

35

40

45

50

55

60

65

20

the one or more suspicious events are part of an attack on a
computing system, use the result of the transformation to
determine whether the one or more suspicious events are part
of'an attack on the computing system by calculating an attack
score for the event-correlation graph, and store the result of
the transformation to a database accessible to the attack-
detecting system. Additionally or alternatively, one or more
of the modules recited herein may transform a processor,
volatile memory, non-volatile memory, and/or any other por-
tion of a physical computing device from one form to another
by executing on the computing device, storing data on the
computing device, and/or otherwise interacting with the com-
puting device.

The preceding description has been provided to enable
others skilled in the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description is not intended to be exhaustive or to be limited to
any precise form disclosed. Many modifications and varia-
tions are possible without departing from the spirit and scope
of the instant disclosure. The embodiments disclosed herein
should be considered in all respects illustrative and not
restrictive. Reference should be made to the appended claims
and their equivalents in determining the scope of the instant
disclosure.

Unless otherwise noted, the terms “connected to” and
“coupled to” (and their derivatives), as used in the specifica-
tion and claims, are to be construed as permitting both direct
and indirect (i.e., via other elements or components) connec-
tion. In addition, the terms “a” or “an,” as used in the speci-
fication and claims, are to be construed as meaning “at least
one of.” Finally, for ease of use, the terms “including” and
“having” (and their derivatives), as used in the specification
and claims, are interchangeable with and have the same
meaning as the word “comprising.”

What is claimed is:

1. A computer-implemented method for using event-cor-
relation graphs to detect attacks on computing systems, at
least a portion of the method being performed by a computing
device comprising at least one physical processor, the method
comprising:

detecting a suspicious event involving a first actor within a

computing system, wherein the suspicious event could
not be individually classified as definitively malicious;
constructing, in response to detecting the suspicious event
involving the first actor, an event-correlation graph,
wherein:
the event-correlation graph comprises at least:
a first node that represents the first actor;
a second node that represents a second actor;
an edge that:
interconnects the first node and the second node;
represents an additional suspicious event involving
the first actor and the second actor;
the additional suspicious event could not be individually
classified as definitively malicious;
each suspicious event represented in the event-correla-
tion graph could not be individually classified as
definitively malicious;
calculating, based at least in part on the additional suspi-
cious event involving the first actor and the second actor,
an attack score for the event-correlation graph;

determining that the attack score is greater than a predeter-
mined threshold;

determining, based at least in part on the attack score being

greater than the predetermined threshold, that the suspi-
cious event comprises an attack on the computing sys-

US 9,141,790 B2

21

tem, wherein the step of constructing the event-correla-
tion graph is performed by the computing device.

2. The computer-implemented method of claim 1, wherein
constructing the event-correlation graph comprises, for each
actor represented by a node within the event-correlation
graph:

identifying a set of events that involve the actor and at least

one additional actor;

for each event within the set of events:

adding an additional node to the event-correlation graph

that represents the additional actor;

adding an additional edge to the event-correlation graph

that:

interconnects the node and additional node;

represents the event involving the actor and the additional

actor.

3. The computer-implemented method of claim 2, wherein
the set of events comprises a set of suspicious events.

4. The computer-implemented method of claim 1, wherein
constructing the event-correlation graph comprises, for each
actor represented by a node within the event-correlation
graph:

identifying a set of suspicious events that involve the actor

and no other actor;

associating each suspicious event within the set of suspi-

cious events with the node that represents the actor.
5. The computer-implemented method of claim 1, wherein:
each suspicious event represented within the event-corre-
lation graph is associated with a suspiciousness score;

calculating the attack score for the event-correlation graph
comprises summing the suspiciousness scores of each
suspicious event represented within the event-correla-
tion graph.

6. The computer-implemented method of claim 1, wherein
calculating the attack score for the event-correlation graph
comprises:

calculating a score for each edge within the event-correla-

tion graph based at least in part on a suspiciousness score
associated with the suspicious event represented by the
edge;

calculating the attack score for the event-correlation graph

comprises summing the scores of each edge within the
event-correlation graph.

7. The computer-implemented method of claim 1, wherein
calculating the attack score for the event-correlation graph
comprises:

calculating a score for each node within the event-correla-

tion graph based at least in part on a suspiciousness score
associated with each suspicious event associated with
the node;

calculating the attack score for the event-correlation graph

comprises summing the scores of each node within the
event-correlation graph.

8. The computer-implemented method of claim 1, further
comprising removing, before calculating the attack score for
the event-correlation graph, at least one low-scoring region of
nodes from the event-correlation graph based at least in part
on a score of the low-scoring region of nodes being less than
an additional predetermined threshold.

9. The computer-implemented method of claim 1, further
comprising removing, before calculating the attack score for
the event-correlation graph, at least one remote node from the
event-correlation graph based at least in part on a distance of
the remote node from the first node being greater than an
additional predetermined threshold.

22

10. The computer-implemented method of claim 1,

wherein:

the suspicious event could not be individually classified as
definitively malicious or legitimate;

5 the additional suspicious event could not be individually
classified as definitively malicious or legitimate;

each suspicious event represented in the event-correlation
graph could not be individually classified as definitively
malicious or legitimate.

10 11. A system for using event-correlation graphs to detect
attacks on computing systems, the system comprising:

a detecting module, stored in memory, that detects a sus-
picious event involving a first actor within a computing
system, wherein the suspicious event could not be indi-

15 vidually classified as definitively malicious;

a constructing module, stored in memory, that constructs,
in response to detecting the suspicious event involving
the first actor, an event-correlation graph, wherein:
the event-correlation graph comprises at least:

20 a first node that represents the first actor;
a second node that represents a second actor within
the computing system;
an edge that:
interconnects the first node and the second node;
25 represents an additional suspicious event involving
the first actor and the second actor;
the additional suspicious event could not be individually
classified as definitively malicious;
each suspicious event represented in the event-correla-
30 tion graph could not be individually classified as
definitively malicious;

a score-calculating module, stored in memory, that calcu-
lates, based at least in part on the additional suspicious
event involving the first actor and the second actor, an

35 attack score for the event-correlation graph;

a threshold-determining module, stored in memory, that

determines that the attack score is greater than a prede-

termined threshold;
an attack-determining module, stored in memory, that
40 determines, based at least in part on the attack score

being greater than the predetermined threshold, that the
suspicious event comprises an attack on the computing
system,
at least one physical processor that executes the detecting
45 module, the constructing module, the score-calculating
module, the threshold-determining module, and the
attack-determining module.
12. The system of claim 11, wherein the constructing mod-
ule constructs the event-correlation graph by, for each actor
50 represented by a node within the event-correlation graph:
identifying a set of events that involve the actor and at least
one additional actor;
for each event within the set of events:
adding an additional node to the event-correlation graph
55 that represents the additional actor;
adding an additional edge to the event-correlation graph
that:
interconnects the node and additional node;
represents the event involving the actor and the additional
60 actor.
13. The system of claim 12, wherein the set of events
comprises a set of suspicious events.
14. The system of claim 11, wherein the constructing mod-
ule constructs the event-correlation graph by, for each actor
65 represented by a node within the event-correlation graph:
identifying a set of suspicious events that involve the actor
and no other actor;

US 9,141,790 B2

23

associating each suspicious event within the set of suspi-

cious events with the node that represents the actor.
15. The system of claim 11, wherein:
each suspicious event represented within the event-corre-
lation graph is associated with a suspiciousness score;

the score-calculating module calculates the attack score for
the event-correlation graph based at least in part on the
suspiciousness score of each suspicious event repre-
sented within the event-correlation graph.

16. The system of claim 11, wherein the score-calculating
module calculates the attack score for the event-correlation
graph by:

calculating a score for each edge within the event-correla-

tion graph based at least in part on a suspiciousness score
associated with the suspicious event represented by the
edge;

calculating the attack score for the event-correlation graph

based at least in part on the score for each edge within the
event-correlation graph.

17. The system of claim 11, wherein the score-calculating
module calculates the attack score for the event-correlation
graph by:

calculating a score for each node within the event-correla-

tion graph based at least in part on a suspiciousness score
associated with each suspicious event associated with
the node;

calculating the attack score for the event-correlation graph

based at least in part on the score for each node within
the event-correlation graph.

18. The system of claim 11, wherein the constructing mod-
ule further removes, before the attack score for the event-
correlation graph is calculated, at least one low-scoring
region of nodes from the event-correlation graph based at
least in part on a score of the low-scoring region of nodes
being less than an additional predetermined threshold.

19. The system of claim 11, wherein the constructing mod-
ule further removes, before the attack score for the event-

10

15

20

25

30

35

24

correlation graph is calculated, at least one remote node from
the event-correlation graph based at least in part on a distance
of the remote node from the first node being greater than an
additional predetermined threshold.

20. A non-transitory computer-readable medium compris-
ing one or more computer-executable instructions that, when
executed by at least one processor of a computing device,
cause the computing device to:

detect a suspicious event involving a first actor within a

computing system, wherein the suspicious event could
not be individually classified as definitively malicious;
construct, in response to detecting the suspicious event
involving the first actor, an event-correlation graph,
wherein:
the event-correlation graph comprises at least:
a first node that represents the first actor;
a second node that represents a second actor within
the computing system;
an edge that:
interconnects the first node and the second node;
represents an additional suspicious event involving
the first actor and the second actor;
the additional suspicious event could not be individually
classified as definitively malicious;
each suspicious event represented in the event-correla-
tion graph could not be individually classified as
definitively malicious;
calculate, based at least in part on the additional suspicious
event involving the first actor and the second actor, an
attack score for the event-correlation graph;

determine that the attack score is greater than a predeter-

mined threshold;

determine, based at least in part on the attack score being

greater than the predetermined threshold, that the suspi-
cious event comprises an attack on the computing sys-
tem.

